Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590246

RESUMO

Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.

2.
Cell Commun Signal ; 22(1): 84, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291511

RESUMO

BACKGROUND: Alzheimer's disease (AD), affecting many elders worldwide, is characterized by A-beta and tau-related cognitive decline. Accumulating evidence suggests that brain iron accumulation is an important characteristic of AD. However, the function and mechanism of the iron-mediated gut-brain axis on AD is still unclear. METHODS: A Caenorhabditis elegans model with tau-overexpression and a high-Fe diet mouse model of cognitive impairment was used for probiotic function evaluation. With the use of qPCR, and immunoblotting, the probiotic regulated differential expression of AD markers and iron related transporting genes was determined. Colorimetric kits, IHC staining, and immunofluorescence have been performed to explore the probiotic mechanism on the development of gut-brain links and brain iron accumulation. RESULTS: In the present study, a high-Fe diet mouse model was used for evaluation in which cognitive impairment, higher A-beta, tau and phosphorylated (p)-tau expression, and dysfunctional phosphate distribution were observed. Considering the close crosstalk between intestine and brain, probiotics were then employed to delay the process of cognitive impairment in the HFe mouse model. Pediococcus acidilactici (PA), but not Bacillus subtilis (BN) administration in HFe-fed mice reduced brain iron accumulation, enhanced global alkaline phosphatase (AP) activity, accelerated dephosphorylation, lowered phosphate levels and increased brain urate production. In addition, because PA regulated cognitive behavior in HFe fed mice, we used the transgenic Caenorhabditis elegans with over-expressed human p-tau for model, and then PA fed worms became more active and longer lived than E.coli fed worms, as well as p-tau was down-regulated. These results suggest that brain iron accumulation influences AD risk proteins and various metabolites. Furthermore, PA was shown to reverse tau-induced pathogenesis via iron transporters and AP-urate interaction. CONCLUSIONS: PA administration studies demonstrate that PA is an important mediator of tau protein reduction, p-tau expression and neurodegenerative behavior both in Caenorhabditis elegans and iron-overload mice. Finally, our results provide candidates for AP modulation strategies as preventive tools for promoting brain health. Video Abstract.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Pediococcus acidilactici , Camundongos , Animais , Humanos , Idoso , Pediococcus acidilactici/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Úrico , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Ferro , Fosfatos
3.
New Phytol ; 241(4): 1421-1434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174365

RESUMO

Receptor-like kinases (RLKs) are evolved for plant cell-cell communications. The typical RLK protein contains an extracellular and hypervariable N-terminus to perceive various signals, a transmembrane domain to anchor into plasma membrane, and a cytoplasmic, highly conserved kinase domain to phosphorylate target proteins. To date, RLKs have manifested their significance in a myriad of biological processes during plant reproductive growth, especially in male fertility. This review first summarizes a recent update on RLKs and their interacting protein partners controlling anther and pollen development, pollen release from dehisced anther, and pollen function during pollination and fertilization. Then, regulatory networks of RLK signaling pathways are proposed. In addition, we predict RLKs in maize and rice genome, obtain homologs of well-studied RLKs from phylogeny of three subfamilies and then analyze their expression patterns in developing anthers of maize and rice to excavate potential RLKs regulating male fertility in crops. Finally, current challenges and future prospects regarding RLKs are discussed. This review will contribute to a better understanding of plant male fertility control by RLKs, creating potential male sterile lines, and inspiring innovative crop breeding methods.


Assuntos
Melhoramento Vegetal , Plantas , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade
4.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967146

RESUMO

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Nitrogênio , Melhoramento Vegetal , Produtos Agrícolas/genética
5.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792967

RESUMO

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Assuntos
Arabidopsis , Infertilidade , Zea mays/genética , Zea mays/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Simulação de Acoplamento Molecular , Pironas/metabolismo , Melhoramento Vegetal , Arabidopsis/genética , Lipídeos , Pólen/genética , Pólen/metabolismo , Infertilidade/genética , Infertilidade/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol Biochem ; 203: 108041, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722281

RESUMO

Subtilases (SBTs), also known as Subtilisin-like serine proteases, are extracellular alkaline protease proteins. SBTs function in all stages of plant growth, development and stress responses. Maize (Zea mays L.) is a crop widely used worldwide as food, feed, and industrial materials. However, information about the members and their functions of the SBT proteins in maize is lacking. In this study, we identified 58 ZmSBT genes from the maize genome and conducted a comprehensive investigation of ZmSBTs by phylogenetic, gene duplication event, gene structure, and protein conserved motif analyses. The ZmSBT proteins were phylogenetically classified into seven groups, and collinearity analysis indicated that many ZmSBTs originate from tandem or segmental duplications. Structural and homolog protein comparison revealed ZmSBTs have conserved protein structures with reported subtilase proteins, suggesting the conserved functions. Further analysis showed that ZmSBTs are expressed in different tissues, and many are responses to specific abiotic stress. Analysis of the anther-specific ZmSBT genes showed their expression peaked at different developmental stages of maize anthers. Subcellular localization analysis of selected maize ZmSBTs showed they are located in different cellular compartments. The information provided in this study is valuable for further functional study of ZmSBTs.

7.
Plant Physiol Biochem ; 203: 108042, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738868

RESUMO

Pollen germination is a prerequisite for double fertilization of flowering plants. A comprehensive understanding of the structural and molecular basis of pollen germination holds great potential for crop yield improvement. The pollen aperture serves as the foundation for most plant pollen germination and pollen aperture formation involves the establishment of cellular polarity, the formation of distinct membrane domains, and the precise deposition of extracellular substances. Successful pollen germination requires precise material exchange and signal transduction between the pollen grain and the stigma. Recent cytological and mutant analysis of pollen germination process in Arabidopsis and rice has expanded our understanding of this biological process. However, the overall changes in germination site structure and energy-related metabolites during pollen germination remain to be further explored. This review summarizes and compares the recent advances in the processes of pollen aperture formation, pollen adhesion, hydration, and germination between eudicot Arabidopsis and monocot rice, and provides insights into the structural basis and molecular mechanisms underlying pollen germination process.

8.
J Adv Res ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37739122

RESUMO

BACKGROUND: Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW: This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.

9.
Cells ; 12(14)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508564

RESUMO

Maize (Zea mays L.) is one of the world's staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to the genetic and molecular dissection of ear traits have been performed; therefore, we explored the genetic loci of the ear traits that were previously discovered in the genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping studies, and refined 153 QTL and 85 quantitative trait nucleotide (QTN) clusters. Next, we shortlisted 19 common intervals (CIs) that can be detected simultaneously by both QTL mapping and GWAS, and 40 CIs that have pleiotropic effects on ear traits. Further, we predicted the best possible candidate genes from 71 QTL and 25 QTN clusters that could be valuable for maize yield improvement.


Assuntos
Locos de Características Quantitativas , Zea mays , Locos de Características Quantitativas/genética , Zea mays/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Mapeamento Cromossômico
10.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501369

RESUMO

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação
11.
Plant Biotechnol J ; 21(9): 1839-1859, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349934

RESUMO

Stalk rot caused by Fusarium verticillioides (Fv) is one of the most destructive diseases in maize production. The defence response of root system to Fv invasion is important for plant growth and development. Dissection of root cell type-specific response to Fv infection and its underlying transcription regulatory networks will aid in understanding the defence mechanism of maize roots to Fv invasion. Here, we reported the transcriptomes of 29 217 single cells derived from root tips of two maize inbred lines inoculated with Fv and mock condition, and identified seven major cell types with 21 transcriptionally distinct cell clusters. Through the weighted gene co-expression network analysis, we identified 12 Fv-responsive regulatory modules from 4049 differentially expressed genes (DEGs) that were activated or repressed by Fv infection in these seven cell types. Using a machining-learning approach, we constructed six cell type-specific immune regulatory networks by integrating Fv-induced DEGs from the cell type-specific transcriptomes, 16 known maize disease-resistant genes, five experimentally validated genes (ZmWOX5b, ZmPIN1a, ZmPAL6, ZmCCoAOMT2, and ZmCOMT), and 42 QTL or QTN predicted genes that are associated with Fv resistance. Taken together, this study provides not only a global view of maize cell fate determination during root development but also insights into the immune regulatory networks in major cell types of maize root tips at single-cell resolution, thus laying the foundation for dissecting molecular mechanisms underlying disease resistance in maize.


Assuntos
Fusarium , Zea mays , Resistência à Doença/genética , Perfilação da Expressão Gênica , Fusarium/fisiologia , Análise de Sequência de RNA
12.
Plant Cell Rep ; 42(9): 1395-1417, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311877

RESUMO

KEY MESSAGE: This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.


Assuntos
Biotecnologia , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Genes Reguladores , Genótipo , Técnicas de Embriogênese Somática de Plantas
13.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905044

RESUMO

Accurate real-time classification of fluorescently labelled maize kernels is important for the industrial application of its advanced breeding techniques. Therefore, it is necessary to develop a real-time classification device and recognition algorithm for fluorescently labelled maize kernels. In this study, a machine vision (MV) system capable of identifying fluorescent maize kernels in real time was designed using a fluorescent protein excitation light source and a filter to achieve optimal detection. A high-precision method for identifying fluorescent maize kernels based on a YOLOv5s convolutional neural network (CNN) was developed. The kernel sorting effects of the improved YOLOv5s model, as well as other YOLO models, were analysed and compared. The results show that using a yellow LED light as an excitation light source combined with an industrial camera filter with a central wavelength of 645 nm achieves the best recognition effect for fluorescent maize kernels. Using the improved YOLOv5s algorithm can increase the recognition accuracy of fluorescent maize kernels to 96%. This study provides a feasible technical solution for the high-precision, real-time classification of fluorescent maize kernels and has universal technical value for the efficient identification and classification of various fluorescently labelled plant seeds.


Assuntos
Melhoramento Vegetal , Zea mays , Redes Neurais de Computação , Algoritmos , Sementes
14.
Nutrients ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678244

RESUMO

Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.


Assuntos
Produtos Agrícolas , Edição de Genes , Produtos Agrícolas/genética , Valor Nutritivo , Tecnologia , Bibliometria
15.
Comput Struct Biotechnol J ; 21: 485-494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618981

RESUMO

Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on different types of genetic populations and mapping methods, many significant loci associated with stalk lodging resistance have been identified so far. However, few work has been performed to compare and integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits. Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular regulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop yields in future.

16.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674545

RESUMO

Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Fenótipo , Locos de Características Quantitativas
17.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675174

RESUMO

Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.


Assuntos
Arabidopsis , Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Fertilidade/genética , Lipídeos , Regulação da Expressão Gênica de Plantas
18.
J Adv Res ; 49: 15-30, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36130683

RESUMO

INTRODUCTION: ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES: Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS: Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS: Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION: ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Zea mays , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solubilidade , Pólen/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipídeos
19.
Nat Prod Rep ; 40(2): 452-469, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472136

RESUMO

Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.


Assuntos
Diterpenos , Terpenos , Terpenos/metabolismo , Plantas/metabolismo , Diterpenos/metabolismo , Hormônios/metabolismo
20.
Plant Biotechnol J ; 21(7): 1320-1342, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36435985

RESUMO

Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.


Assuntos
Nitrogênio , Reguladores de Crescimento de Plantas , Melhoramento Vegetal , Produtos Agrícolas , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...